ROUND I: Elementary number theory

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. What is the smallest number that has all of the integers from 2 through 11 as factors?
2. Find the smallest positive integer n such that every digit of $7 n$ is 9 .
3. State the greatest common factor in base 12 for 1560_{12} and 210_{12}.

ANSWERS
(1 pt) 1 . \qquad
(2 pts) 2. \qquad
(3 pts) 3. 12

Shepherd Hill, Tantasqua, Westborough

ROUND II: Algebra 1 - open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If $a+2 a+3 a=8$, what is the value of $3 a+4 a+5 a+6 a$?
2. In a group of cows and chickens, the number of legs was 14 more than twice the number of heads. How many cows were there?
3. Solve for $\mathrm{x}: \frac{1-\frac{2}{2-\frac{1}{x}}}{1-\frac{2}{\frac{1}{x}-2}}=\frac{1}{4}$

ANSWERS

(1 pt) 1 .
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Bromfield, Quaboag, Tantasqua

ROUND III: Open geometry

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Find the tangent length t, in terms of the radius r , which will make the area of the right triangle equal the area of the circle.

2.

In the figure $\mathrm{p} \| \mathrm{q}$ and the angles have degree measures as shown. Find x.
3. In hexagon BDFHJK, $\overline{\mathrm{BD}} \perp \overline{\mathrm{BK}}$. When $\overline{\mathrm{DF}}$ and $\overline{\mathrm{JH}}$ are extended, they meet to form an angle of 36°. The interior angles at D, F, J, and K are congruent. Find the number of degrees in angle FHJ.

ANSWFRS
$(1 \mathrm{pt}) \quad 1 . t=$
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Hudson, Tahanto, QSC

ROUND IV: Logs, exponents, radicals

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Simplify: $\frac{x^{\frac{1}{2}}+x^{\frac{-1}{2}}}{x^{\frac{-1}{2}}}$
2. Find x if $\log _{10}\left[\log _{x}\left(\log _{5} 125\right)\right]=0$
3. Express as one fraction in simplified radical form: $\frac{\sqrt{7}}{\sqrt{5}+\sqrt{2}-\sqrt{7}}$

ANSWERS

$(1 \mathrm{pt}) 1$.
(2 pts) 2 . \qquad
(3 pts) 3. \qquad
Bromfield, Notre Dame, Shrewsbury

ROUND V: Trigonometry - open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. For t in radians, find the sum of the amplitude and the period of $y=2 \sin (400 \pi t)$.
2. If $(\sin x-\cos x)^{2}=a^{2}$, then express $\frac{\sin 2 x}{1-a}$ in simplest form in terms of a.
3. $\mathrm{AB}=\mathrm{BF}=\mathrm{BC}=1$
$\overline{\mathrm{DC}} \perp \overline{\mathrm{BC}}, \quad \overline{\mathrm{AB}} \perp \overline{\mathrm{BC}}$
$\overline{\mathrm{FG}} \perp \overline{\mathrm{AB}}, \quad \overline{\mathrm{EA}} \perp \overline{\mathrm{AB}}$
For each trig function name a segment length which equals that function of x.

ANSWERS
$(1 \mathrm{pt}) 1$. \qquad
(2 pts) 2. \qquad

$\sin x=$	$\tan x=$
(3 pts) 3. $\cos x=$	$\sec x=$
	$\cot x=$

[^0]TEAM ROUND: Topics of previous rounds and open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AND ON THE SEPARATE TEAM ANSWER SHEET

1. Determine the number of four digit positive integers which are divisible by 12 and whose digits are all primes.
2. Find the product of the LCM and GCF of $3 a^{2} b^{3}, 12 a b^{3}$, and $15 a^{2} b c^{3}$.
3. Line segment $\overline{\mathrm{AE}}$ divides rectangle ABCD into two parts whose areas are in the ratio $6: 1$. Find the ratio $\mathrm{EC}: \mathrm{BE}$.

4. Simplify: $\sqrt[3]{\log _{x} x^{4} \cdot \log _{2} 16^{2} \cdot \frac{1}{\log _{25} 5}}$
5. Solve for θ in degrees, $0^{\circ} \leq \theta^{\circ}<360^{\circ}: \sin \theta+\csc ^{2} \theta=1-\sin ^{2} \theta+\cot ^{2} \theta$
6. Factor over the reals: $x^{2}+3 x+1$. Hint: This means that radicals may appear in the answer.
7. Write an inequality of the form $|x \pm a| \leq o r \geq b$ for this graph:

8. Two boats, A and B, leave opposite shores of a lake at the same time and aim at the other boat's starting point. They pass 1000 feet from where A started. Each continues to the opposite shore, immediately turns around and heads back in the opposite direction. They pass the second time 900 feet from where B furst started. They travel at constaint. but different speeds. Asuming no lost time in turning around or passing, what is the distance between their starting points?
9. Find integers a, b, c if $3 a-2 b+4 c=39, a+b+c=50$, and $1 \leq a \leq 9$.

Assabet Valley, Auburn, Burncoat, South, Uxbridge, QSC
\(\frac{March 7, 2001}{\substack{ROUND I

\# they}}\)	1. 1 ot	27,720

2. 2 ts 142,857
3. 3nts 50_{12}

ROUND II

1. 1 nt 24

2 lo 1
2. 2 nets
3. $2 n t s \quad-\frac{3}{4}$ or -.75

ROUND III

1. 1 nt $t=2 \pi r$
geom
$\left.\begin{array}{ll}\text { ?. } 2 \text { uts } & 141^{\circ} \\ \text { 3. } 3 \text { nos } & 78^{\circ}\end{array}\right\} \begin{aligned} & \text { degree } \\ & \text { symbol } \\ & \text { not needed }\end{aligned}$

ROUND IV $x+1$
loos
exp
rad
2.2nis 3
3. $3 \operatorname{nts} \frac{5 \sqrt{14}+2 \sqrt{35}+7 \sqrt{10}}{20}$

ROUnD
trig 1.1 nt $2 \frac{1}{200}$ or 2.005 or $\frac{401}{200}$
2. 2 uts $\boldsymbol{1}+\boldsymbol{a}$
$\sin F G \quad \tan A E \quad$ sec $B E$
3. $3 \operatorname{nts} \cos B G \quad \cot C D \quad \operatorname{cs} B D$

Reverse letter order OK. Notation $\overline{F G}$ OK.

TEAM ROUND 2 pots each

1. $1 /$
2. $180 a^{3} b^{4} c^{3}$
3. $5: 2$
4. 4
5. $\left(x+\frac{3+\sqrt{5}}{2}\right)\left(x+\frac{3-\sqrt{5}}{2}\right)$

$$
\frac{3}{2}+\frac{\sqrt{5}}{2} O K
$$

7. $|x+2| \leq 6$
8. 2100 ft
9. $a=5 \quad b=26 \quad c=19$

ROUND I

$12.32 .5 .723 \cdot 11=27,720$
$29997 \div 7$ must give an integer Tiny 99. then 499, etc intel yew find that $994,949 \div 7=142,857$
$3 \quad 156 C_{12}=172 \bar{z}+5144+612=2520$

$$
\begin{aligned}
& =2^{3} 3^{3} \cdot 57 \\
210_{12} & =2^{2144}+12-300=2^{2} 35^{2} \\
G C F & =2^{2} \cdot 35=60 \\
\text { and } C 0 & =5 \cdot 12 \text {. Hence } 5012
\end{aligned}
$$

Round II
1 $a+2 a+3 a=6 a=\mathbf{z}$
$3 a+4 a+5 a+6 a=18 a=3 \cdot 6 a=24$
2. Let $c=\#$ cow-, $h=\#$ chickens

$$
\begin{aligned}
& 4 c+2 h-14=2(c+h) \\
& 4 c=2 c+14 \Rightarrow c=7
\end{aligned}
$$

3. $1-\frac{2}{2-\frac{1}{x}} \frac{x}{x}$

$$
\begin{aligned}
& 1-\frac{2}{\frac{1}{x}-2} \frac{y}{x}=\frac{1}{4} \quad \text { Work on left } \\
& \text { side for a while } \\
& \frac{1-\frac{2 x}{2 x-1}}{1-\frac{2 x}{1-2 x}}=\frac{2 x-1-2 x}{2 x-1} \cdot \frac{1-2 x}{1-2 x-2 x} \\
& =-\frac{1}{1-4 x}=\frac{1}{4} \\
& 4=1-4 x, 4 x=-3, \quad r=-\frac{3}{4}
\end{aligned}
$$

Rain III

$$
\begin{aligned}
1 \quad r t \Delta \text { area } & =\text { circe care } \\
\frac{1}{2} r t & =\pi r^{2} \\
t & =2 \pi r \text { !ike circumference! }
\end{aligned}
$$

Rouivn III cont

Then x is an ext L of a \triangle which $=$ the sum of the reinote int 4 's, $94^{\circ}+47^{\circ}=141^{\circ}$
3.

ROUND IV

1. $\frac{x^{\frac{1}{2}}+x^{-\frac{1}{2}}}{x^{-\frac{1}{2}}} \frac{x^{\frac{1}{2}}}{x^{\frac{1}{2}}}=\frac{x^{1}+x^{0}}{x^{0}}=x+1$
2. $\log _{1}\left[\log _{x}\left(\log _{5} 125\right)\right]=0$
$\therefore \quad \log _{x}\left(\log _{5} 125\right)=1 \quad \operatorname{since} 10^{\circ}=1$
Then $\log _{x} 3=1 \quad$ since $5^{3}=125$
ane $\quad x=3 \quad$ since $3^{\prime}=3$
3. $\frac{\sqrt{7}}{(\sqrt{5}+\sqrt{2}-\sqrt{7}} \cdot \frac{\sqrt{5}+\sqrt{2}+\sqrt{7})}{\sqrt{5}+\sqrt{2}+\sqrt{7})}$
$=\frac{\sqrt{35}+\sqrt{14}+7}{5+2 \sqrt{10}+2-7} \sqrt{\sqrt{10}}$

$$
=\frac{\sqrt{755} 2+\sqrt{7} 25 \cdot 2+7 \sqrt{10}}{2 c}=\frac{5 \sqrt{14}+2 \sqrt{35}+7 \sqrt{10}}{20}
$$

Round \mathbb{V}

$$
\begin{aligned}
& 1 \quad y=2 \sin (\underbrace{400 \pi}_{\text {period }}=\frac{2 \pi}{400 \pi}=\frac{1}{200} \\
& a_{\text {ant }}=2 \\
& \text { sum }=2 \frac{1}{200}
\end{aligned}
$$

March 7, 2001 WOCOMAL Varsity BRIEF SOLUTIONs cont,
ROLND Z cont
$2 \quad \sin ^{2} x-2 \sin x \cos x+\cos ^{2} x=a^{2}$

$$
1-\sin 2 x=a^{2} \text { or } \sin 2 x=1-a^{2}
$$

Then $\frac{\sin 2 x}{1-a}=\frac{1-a^{2}}{1-a}=1+a$

$$
\tan x=\frac{C \int}{\operatorname{ddj}} \text { in } \triangle B A E=A E \text { in each }
$$

$$
\cot x=\frac{C d}{a f f} \text { in } \triangle B C D=C D
$$

$$
\sec x=\frac{\text { hyp }}{\text { adj }} \text { in } \triangle B A E=B E
$$

$$
\csc x=\frac{\text { hyp }}{0 \rho f} \operatorname{in} \triangle B C D=B D
$$

TEAM ROUND

1 Prime digits are 2,3,5,7 Need divisibility by 4 . so last 2 digits are $32,52,0072$ Also need divisibility by 3 se digit sum must be divisible by 3 They are $2232,2532,2772,3572$, 3732, 5232, 5532 5772,7272, 7332, 7572, 2352. 3252, 3552,5352,7752 16 of them

2 $3 a^{2} b^{3}, 2^{2} 3 a b^{3}, 3 j a^{2} b c^{3}$ $L C M-2^{2} 35^{5} c^{2} b^{3} c^{3}$ and $G C F=3 a b$ Product $=18 c a^{3} b^{4} c^{3}$

want $\frac{z}{y}$

$$
\frac{\text { area } \Delta \frac{A B C}{\text { urea rect } A R C D}-\frac{1}{7}}{}
$$

$\frac{\frac{1}{2} x y}{x(y+z)}-\frac{1}{7}, \frac{y}{2 y+\alpha z}-\frac{1}{7}$
$7 y=2 y+2 z, \quad 5 y-2 z \Rightarrow \frac{z}{y}=\frac{5}{2}$
$4 \sqrt[3]{\log _{x} x^{4} \log _{2} 14^{2}} \frac{1}{\log _{25} 5}$
$=\sqrt[3]{4} \operatorname{lic}_{2} 2^{2} \frac{1}{\frac{1}{2}}$
$=\sqrt[3]{482}=3^{-} 6-4$

TEAM ROLIND cont
$5 \quad \sin \theta+\csc ^{2} \theta=1-\sin ^{2} \theta+\cot ^{2} \theta$
$\sin \theta+\csc ^{2} \theta=\csc ^{2} \theta-\sin ^{2} \theta$
$\sin i+\sin ^{2} \theta=0$
$\sin \theta(1+\sin \theta)=0$
$\sin \theta=c \quad \sin \theta=-1$
reject because $\quad E=270$
6 Solve $x^{2}+3 x+1=0$ by the quadratic formula Get roots r_{1} and r_{2} Facts ing is $(x-r)\left(x-r_{2}\right) . \quad x=-3 \pm$ ソ 9.4 $\left(x+\frac{3-\sqrt{5}}{2}, x+\frac{3+\sqrt{5}}{2}\right)$

7 Interval length $=12$, midpt $=-2$ Distance between x and $-2 \leq 6$

$$
|x+2| \leq 6
$$

8 Let $d=$ desired distance
list passing

and passing

Since the speeds are constant, the ratio $\frac{\text { dist to } 1 \text { It , es }}{\text { dist to and pass }}$ is the same for both
$\therefore \frac{1000}{d+900}=\frac{d-100}{2 d-900}$

$$
\text { 2006d-900cui } \quad i^{2}-100 d-900 c 01
$$

$$
c=d^{2}-210 c d \text { and } a>c
$$

$$
t=2100 \mathrm{ft}
$$

9 2ndeq $4 a+4 b+4 c=2 c c$

$$
15 t c y \cdot 3 c-2 b+4 c=39
$$

$$
\text { sumter } a+6 b=161
$$

$$
a=161-6 b
$$

Since $1 \leq a \leq 9, \quad 1 \leq 16,1-c, b \leq 4$
$\therefore-100 \leq-6 b \leq-152$
$\therefore \quad 26 \frac{\bar{y}}{\frac{1}{3}} \geq b \geq 25 \frac{1}{3}$, but $b=$ integer $=2 C$
Then $a=161-6,26=5$
and $c=5 c-a-b=19$

[^0]: Bartlett, Doherty, Westborough

