March 7, 2001

ROUND I: Elementary number theory

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. What is the smallest number that has all of the integers from 2 through 11 as factors?

2. Find the smallest positive integer n such that every digit of 7n is 9.

3. State the greatest common factor in base 12 for 1560_{12} and 210_{12} .

ANSWERS (1 pt) 1. _____

(2 pts) 2.

(3 pts) 3. _____

Shepherd Hill, Tantasqua, Westborough

ROUND II: Algebra 1 - open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. If a + 2a + 3a = 8, what is the value of 3a + 4a + 5a + 6a?

2. In a group of cows and chickens, the number of legs was 14 more than twice the number of heads. How many cows were there?

3. Solve for x:
$$\frac{1 - \frac{2}{2 - \frac{1}{x}}}{1 - \frac{2}{\frac{1}{x} - 2}} = \frac{1}{4}$$

ANSWERS

- (1 pt) 1. _____
- (2 pts) 2.
- (3 pts) 3.

Bromfield, Quaboag, Tantasqua

ROUND III: Open geometry

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Find the tangent length t, in terms of the radius r, which will make the area of the right triangle equal the area of the circle.

In the figure $p \parallel q$ and the angles have degree measures as shown. Find x.

3. In hexagon BDFHJK, $\overline{BD} \perp \overline{BK}$. When \overline{DF} and \overline{JH} are extended, they meet to form an angle of 36.° The interior angles at D, F, J, and K are congruent. Find the number of degrees in angle FHJ.

ANSWFRS (1 pt) 1. _____

(2 pts) 2.

(3 pts) 3._____

Hudson, Tahanto, QSC

ROUND IV: Logs, exponents, radicals

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Simplify:
$$\frac{x^2 + x^{-1}}{x^{-1}}$$

2. Find x if $\log_{10} [\log_{x} (\log_{5} 125)] = 0$

3. Express as one fraction in simplified radical form: $\frac{\sqrt{7}}{\sqrt{5} + \sqrt{2} - \sqrt{7}}$

ANSW	/ER	S
(1 pt)	1.	

(2 pt	s) 2	2.	.
-------	------	----	----------

(3 pts) 3.

Bromfield, Notre Dame, Shrewsbury

ROUND V: Trigonometry - open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. For t in radians, find the sum of the amplitude and the period of $y = 2\sin(400\pi t)$.

2. If $(\sin x - \cos x)^2 = a^2$, then express $\frac{\sin 2x}{1-a}$ in simplest form in terms of a.

Bartlett, Doherty, Westborough

TEAM ROUND: Topics of previous rounds and open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM AND ON THE SEPARATE TEAM ANSWER SHEET 2 points each

- 1. Determine the number of four digit positive integers which are divisible by 12 and whose digits are all primes.
- 2. Find the product of the LCM and GCF of $3a^2b^3$, $12ab^3$, and $15a^2bc^3$.
- 3. Line segment \overline{AE} divides rectangle ABCD into two parts whose areas are in the ratio 6:1. Find the ratio EC:BE.

- 4. Simplify: $3 \log_{x} x^{4} \cdot \log_{2} 16^{2} \cdot \frac{1}{\log_{25} 5}$
- 5. Solve for θ in degrees, $0 \le \theta \le 360^\circ$: $\sin \theta + \csc^2 \theta = 1 \sin^2 \theta + \cot^2 \theta$
- 6. Factor over the reals: $x^2 + 3x + 1$. Hint: This means that radicals may appear in the answer.
- 7. Write an inequality of the form $|x \pm a| \le or \ge b$ for this graph:

- 8. Two boats, A and B, leave opposite shores of a lake at the same time and aim at the other boat's starting point. They pass 1000 feet from where A started. Each continues to the opposite shore, immediately turns around and heads back in the opposite direction. They pass the second time 900 feet from where B first started. They travel at constant, but different speeds. Asuming no lost time in turning around or passing, what is the distance between their starting points?
- 9. Find integers a, b, c if 3a 2b + 4c = 39, a + b + c = 50, and $1 \le a \le 9$.

Assabet Valley, Auburn, Burncoat, South, Uxbridge, QSC

	March 7, 2001	WOCOMAL Var	sity Meet ANSWERS
ROUND I # thry	1. 1 pt 27, 720		TEAM ROUND 2 pts eacl
	2.2 pts 142,85	7	ı. //
	3.3 pts 50,2		2. 180a ³ 64
ROUND II alo l	1. 1 pt 24		3. 5:2
	2. 2 pts 7		5
	3. 3 nts $-\frac{3}{4}$ or	75	
ROUND III geom	1. 1 pt t = 2 77	r	4. 4
	2. 2 ots 141° 3. 3 ots 78°	degree	r. 270°
	3.3 nts 78°	f not needed	6. $\left(x + \frac{3+\sqrt{5}}{2}\right)\left(x + \frac{3-\sqrt{5}}{2}\right)$
lors	1. 1 ** * * 		$\frac{3}{2} + \frac{\sqrt{5}}{2} \circ K$
exp rad	2.2 n's 3		7. $ x+2 \leq 6$
	3. 3 nts $\frac{5\sqrt{14}+2\sqrt{2}}{20}$	<u>35</u> + 7√10)	•
ROUND V t ri g	1. 1 pt 2 1/200 or	2.005 or <u>401</u> 200	8. 2100 ft
	2.2 pts /+a		9. a= 5 b= 26 c= 1
	sin FG ton AE	sec BE	
3. 3	cos BG cot CD nts Reverse lefter or Notation FG OK.	(se BD der OK.	

ROUND III cont - Extend this line 2 133' - Get other 135° from \ <u>9</u>4° parallels, 94° and c 1330 47" from supplements Then X is an ext L of a & which = the sum of the remote int K's, 94"+47=141" 3. We want Y, ext Acto . Y = 180 - x + 36 = 216 xFrom the hexagan Y + 4x + 90 = 4.120D 216 - x + 4x + 90 = 7203x = 414 $\chi = 13\hat{\ell}$ Then y = 216-138 = 78 ROUND IV $\frac{1}{\chi^{\frac{1}{2}} + \chi^{-\frac{1}{2}}}{\chi^{-\frac{1}{2}}} \frac{\chi^{\frac{1}{2}}}{\chi^{\frac{1}{2}}} = \frac{\chi' + \chi^{\circ}}{\chi^{\circ}} = \chi + 1$ 2. log, [log x (log 5125)] = 0 :. log x (log 125) = | Since 10'=1 Then $\log_{x} 3 = 1$ since $5^{3} = 125$ and x = 3 since 3' = 3 $\frac{3}{(\sqrt{5}+\sqrt{2})^{-}}, \frac{\sqrt{5}+\sqrt{2}+\sqrt{7}}{\sqrt{5}+\sqrt{2}+\sqrt{7}}, \frac{\sqrt{5}+\sqrt{2}+\sqrt{7}}{\sqrt{5}+\sqrt{2}+\sqrt{7}}$ $= \frac{\sqrt{35} + \sqrt{14} + 7}{5 + 2\sqrt{10} + 2 - 7} \sqrt{10}$ $= \sqrt{7552} + \sqrt{7252} + 7\sqrt{10} = 5\sqrt{14} + 2\sqrt{35} + 7\sqrt{10}$ 20 ROUND V

$$1 \quad y = 2 \sin \left(400 \pi t \right)$$

$$a_{ny=2} \qquad period = \frac{2\pi}{400\pi} = \frac{1}{200}$$

$$s_{um} = 2 \frac{1}{200}$$

ROLND I cont
$2 \sin^2 x - 2 \sin x \cos x + \cos^2 x = a^2$
$1 - \sin 2x = a^2 - \sin 2x = 1 - a^2$
Then $\frac{51n2x}{1-a} = \frac{1-a^2}{1-a} = 1+a$
1-a 1-a
$3 \cdot 3 + 5 \cdot 1 + 5 \cdot $
$F = \cos x = \frac{adu}{byp} = BG$
31
$c = \frac{x}{der con = 1}$
fan Y = C I I I I a a - Ar
$\cot x = \frac{dd}{dp} \text{ in } \triangle BCD = CD$
sec $x = \frac{hyr}{ad_j}$ in $\Delta BAE = BE$
$\csc x = \frac{hyp}{off}$ in $(\Delta 3C) = BD$

TEAM ROUND

1 Prime digits are 2.3,5,7 Neud divisibility by 4, so last 2 digits are 32,52, 72 Also need divisibility by 3 so digit sum must be divisible by 3 They are 2232,2532,2772,3372, 3732,5232,5532 5772,7272,7332,7572, 2352,3252,3552,5352,7752 16 of them

2
$$3a^{2}b^{3}$$
, $2^{2}3ab^{3}$, $35a^{2}bc^{3}$
 $L(M - 2^{2}35c^{2}b^{3}c^{3})$ and $64F = 3ab$
 $Product = 18Cca^{3}b^{4}c^{3}$

$$\frac{3}{2} \frac{x}{1} \frac{x}{2} \frac{y}{6} \frac{y}{6} = \frac{y}{6} \frac{y}{6} \frac{y}{6} \frac{y}{6} \frac{y}{6} \frac{y}{6} \frac{y}{7} \frac$$

TEAM ROUND cmt 5 $\sin \theta + \csc^2 \theta = 1 - \sin^2 \theta + \cot^2 \theta$ $\sin \theta + \csc^2 \theta = \csc^2 \theta - \sin^2 \theta$ $\sin \theta + \sin^2 \theta = 0$ $\sin \theta (1 + \sin \theta) = 0$ $\sin \theta = -1$ reject because $\theta = 270$

- 7 Interval length = 12, midpt = -2 Distonce between $x c_{pd} - 2 \le 6$ $|x+2| \le 6$
- 8 let d = desired distance 1, 1000 d-1000 (st possing d d-966 × 900 2 2nd passing Since the speeds are constant, the ratio dist to 1st pass dist to 2nd pass is the same for both $\frac{1000}{d+900} = \frac{d-100}{2d-900}$ 2001 a - 900 (12 d) 2-101 d - 901 (10) 0 = d2 - 2101 d and 0>0 $d = 2100 \, \text{ft}$ 9 2nd eq 4a + 4b + 4c = 2cc
- 7 2na eq 4a + 46 + 4c = 2cc $1st eq \cdot 3a 26 + 4c = 39$ subtr a + 6b = 161 a = 161 6b $Since 1 \le a \le 9, 1 \le 161 66 \le 9$ $cr 160 \le -66 \le -152$ $\therefore 26\frac{5}{3} \ge b \ge 25\frac{1}{3}, but b = integer = 2c$ Then a = 161 62c = 5 and c = 5c a 6 = 19